Image

Smart Connector Could Cut Revenue Losses

Jan. 25, 2012
The Smart Connector, a new sensor device, is installed in the connecting units of coaxial cable assemblies to provide real-time information about primary failure modes in RF cables. In telecommunications systems, connector and equipment ...
The Smart Connector, a new sensor device, is installed in the connecting units of coaxial cable assemblies to provide real-time information about primary failure modes in RF cables.

In telecommunications systems, connector and equipment failures are only detected after tower capacity diminishes. The system then must be shut down to pinpoint the problem. As a result of this lag, deterioration and damage to cellular telecommunications cable assemblies cost organizations and customers millions in lost revenue and services. To alleviate the impact of these failures, researchers at the Rochester Institute of Technology (RIT; www.rit.edu) and PPC Corp. (www.ppc-online.com) have developed the Smart Connector. Once it is installed in the connecting units of coaxial cables, this connector can provide information about equipment damage. It also can pinpoint the exact location of that damage through self-diagnosing technologies.

Together with his research group, Robert BowmanProfessor of Electrical and Microelectronic Engineering in RIT's Kate Gleason College of Engineeringworked with Noah Montena, Principal Engineer at PPC, to design the sensor-disc system (see photo). The system monitors the primary failure modes in RF cables. Each sensor-disc contains a unique site identifier. A disc monitors critical conditions and reports the sensor status using backscatter telemetry. Notably, every smart connector is capable of activating or powering down its energy capacity by extracting miniscule amounts of RF energy from the coaxial cables.

Now that the university has demonstrated the feasibility of this technology, it is working with PPC to further test the manufactured product. The university and PPC Corp. signed a licensing agreement in June. This sensor is the result of corporate research and development initiatives established at RIT, which have grown over the past few years.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...