Feedback

June 13, 2008
How can metamaterials be viable for modulus of refractive index |n| group =Vphase = 3c (speed of light)? This can be seen where: dn/dλ = 0 for Vg = cX where λ = wavelength in vacuum This also invalidates signal and energy ...

How can metamaterials be viable for modulus of refractive index |n| group =Vphase
= 3c (speed of light)?

This can be seen where:
dn/dλ = 0
for Vg = cX
where λ = wavelength in vacuum

This also invalidates signal and energy velocity. We now have much literature with curves that correspond to the profoundly researched anomalous dispersion of Sommerfeld Brillouin- Stratton, (modulus of n

All the demonstrations that are phased arrays of Hertzian dipoles can bend a beam in any direction you wish. (Heinrich Hertz invented the split ring resonator also). There are also problems with energy density in both classical and quantum electrodynamics. There are increasing numbers of papers in which scientists claim to have proven extraordinary phenomena by applying the concept of group velocity to the anomalous dispersion of waves.

Two of the greatest wave theorists of all time, Arnold Sommerfeld and Lon Brillouin, have dealt with the subject. In separate papers, Sommerfeld and Brillouin wrote that, in anomalous dispersion, the group velocity cannot be the signal velocity.1 Indeed, in anomalous dispersion, the group velocity goes through both negative and positive infinite values. It also goes through values greater than the speed of light (as does the phase velocity).2

Metamaterials and the possibility of negative refraction are interesting, but before the industries based on classical and quantum electrodynamics can take them seriously, these questions must be addressed. In anomalous dispersion of Sommerfeld Brillouin-Stratton (modulus of n c, and/or traveling backward, in a way analogous to the old chestnut about the speed of intersection of two searchlight beams. The published values of +0.9 > n > 0.6 cannot be physicalespecially where Vgroup = Vphase equal speeds greater than light, thus invalidating signal and energy velocity.

Dr. M.J. Lazarus
University of Lancaster
e-mail: [email protected]

REFERENCES
1. A. Sommerfeld, Annalen der Physik 44, 177 (1914); L. Brillouin, Annalen der Physik 44, 203 (1914). For a lucid English-language digest of the two papers, see ref. 2, p. 334.
2. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941), p. 339, Fig. 63.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...