Microwaves & RF
  • Resources
  • Directory
  • Webinars
  • White Papers
  • Video
  • Blogs
  • CAD Models
  • Advertise
    • Search
  • Top Stories
  • Products of the Week
  • Defense
  • Test
  • Components
  • Semiconductors
  • Embedded
  • Data Sheets
  • Topics
    - TechXchange Topics -- Markets -DefenseAutomotive- Technologies -Test & MeasurementComponentsCellular / 5G / 6G EDA
    Resources
    Top Stories of the WeekMWRF ResourcesDigital issuesEngineering AcademyWISESearch Data SheetsCompany DirectoryLibraryContributeSubscribe
    Advertise
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. Content

    MEMS Make Noise At MTT-S

    June 29, 2004
    While questions may remain among engineers considering MEMS devices for their designs, reliability does not appear to be one of them.
    Jack Browne

    "Experimental" technologies are often slow to gain ground among high-frequency engineers. For example, high-electron-mobility-transistor (HEMT) devices, which are commonplace today, were used by only the most courageous of engineers during the early years of the technology. At present, microelectromechanical systems (MEMS) devices are viewed as a technology with high associated risk, although evidence from the recent Microwave Theory & Techniques Symposium (MTT-S) in Fort Worth, TX hints that greater acceptance of MEMS may be forthcoming.

    MEMS devices can be thought of as silicon integrated circuits (ICs) with moving parts. The technology has existed since the 1970s in the form of sensors, but RF devices have been rare. The most common RF device is the MEMS switch (which sacrifices the speed of a PIN diode for greatly enhanced isolation). MEMS microwave switch technology has existed since the 1980s, developed by Dr. Larry Larson of Hughes Research Labs (Malibu, CA) with support from DARPA.

    Any new technology must provide advantages over an existing technology before it can replace the older approach. While MEMS switches, for example, offer those advantages over other technologies in terms of size, power handling, power consumption, and their ability for high levels of integration on silicon, they pose a mystery for many RF/microwave engineers in terms of reliability. According to Dan Hyman, President of XCom Wireless (www.xcomwireless.com, Signal Hill, CA), who spoke recently at a MEMS-inspired panel session at the MTT-S, his company's work on MEMS switches, switch matrices, filters, phase shifters, and antenna assemblies has shown the technology to be extremely reliable. He and his designers are such firm believers in the technology, in fact, that he noted a recent development project for a front-end design in which the majority of the passive signal-routing components were MEMS devices.

    On the MTT-S exhibit floor, Dow-Key Microwave (www.dowkey.com, Ventura, CA) showed results for accelerated lifetime testing of MEMS switches, with almost imperceptible degradation in electrical performance even after millions of switching operations. The company also introduced their model M1C06-CDK2 single-pole, double-throw (SPDT) DC-to-6-GHz switch rated for an amazing 100 million cycles.

    While questions may remain among engineers considering MEMS devices for their designs, reliability does not appear to be one of them. The technology is not the answer for all applications (the lack of speed being an essential limiting factor), but it is an approach worth considering.

    Continue Reading

    MEMS vs. Crystal Oscillators: It’s All in the Application

    Smart RF Accessories Provide Flexible, Scalable Test Solutions

    Sponsored Recommendations

    Near and Far Field Measurement

    Oct. 31, 2023

    S-parameters for High-frequency Circuit Simulations

    Oct. 31, 2023

    Common Mode Filter Chokes for High Speed Data Interfaces

    Oct. 31, 2023

    Simulation Model Considerations: Part I

    Oct. 31, 2023

    New

    Orbital Space Junk is No Joke

    Empowering SOMs for IoT Devices with Matter Connectivity

    U.S. DoD Works to Keep Ukraine’s F-16s Flying

    Most Read

    Open RAN Radio-Unit Verification Speeds Design and Production

    Lockheed Martin Applies AI to Fighting Forest Fires

    Interface Adds Reach to Modular Radio System

    Sponsored

    VNA Calibration Theory Introduction

    Automated Antenna Testing

    Introduction to Antenna Aperture

    Microwaves & RF
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo