2D Tomographic Imaging Characterizes Benign And Malignant Breast Tissue

Sept. 12, 2007
X-Ray mammography currently misses an estimated 15 percent of breast cancer. It also has trouble imaging women with dense breasts and discriminating between benign and malignant masses. As an alternative, a characterization of benign and malignant breast ...

X-Ray mammography currently misses an estimated 15 percent of breast cancer. It also has trouble imaging women with dense breasts and discriminating between benign and malignant masses. As an alternative, a characterization of benign and malignant breast tissues based on their reconstructed shape and permittivity profile has been presented by G. Bindu and K.T. Mathew from the Microwave Tomography and Materials Research Laboratory at Cochin University of Science and Technology.

Normal and benign breast tissues were collected from two patients. Normal and malignant breast tissues were then collected from two other patients. From each specimen, a thin, circular sample with a 6-mm diameter and 2-mm thickness was excised. To study each sample's water content, 10 g of every sample was subjected to a preheated oven at +70°C for 10 s. For microwave tomographic imaging, abnormal tissue of radius ~0.5 cm was inserted in the same person's normal tissue sample (which had a radius of ~1 cm).

The rectangular cavity perturbation model is used for an estimation of the tissues' dielectric properties. The cavity is made from S-band waveguide with both ends closed. The resonator's length determines the number of resonant frequencies. Bow-tie antennas with resonant frequencies of 2.985 GHz are used for transmission and reception. For data acquisition, the sample is illuminated by the bow-tie antenna at a frequency of 3 GHz. Two-dimensional (2D) tomographic images are reconstructed from the scattered fields using a distorted Born iterative algorithm. The imaging studies show that such tumors can be characterized at the industrial-scientific-medical (ISM) band. See "Characterization of Benign and Malignant Breast Tissues Using 2-D Microwave Tomo-graphic Imaging," Microwave and Optical Technology Letters, Oct. 2007, p. 2341.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...