Approach Improves Impedance Bandwidth Of Microstrip Antennas

Nov. 16, 2006
MICROSTRIP ANTENNAS have been miniaturized through a number of techniques and choices of materials. Traditional techniques involve the use of high permittivity dielectric materials to decrease the physical dimensions of the radiator. Pekka ...

MICROSTRIP ANTENNAS have been miniaturized through a number of techniques and choices of materials. Traditional techniques involve the use of high permittivity dielectric materials to decrease the physical dimensions of the radiator. Pekka Ikonen and associates from the Radio Laboratory/SMARAD at the Helsinki University of Technology (Helsinki, Finland) chose an approach using artificial magnetodielectric loading to create artificial magnetism at microwave frequencies for a net reduction in the size of a microstrip antenna.

The researchers note that resonant magnetic media can be used with planar radiators in two basic ways. If the resonance of the material lies inside the operational band of the loaded antenna and can be combined with the antenna resonance, it is possible to create a multiresonant antenna. Another method involves using the material-to resonate at a higher frequency than the operational frequency of the loaded antenna, while maintaining the effective magnetic properties over a wide frequency band.

The researchers systematically studied the effects of artificial magnetodielectric substrates on the impedance bandwidth properties of microstrip antennas and built a prototype antenna having volume loaded with an array of metasolenoids. Designed for 2.07 GHz, the antenna employed a host substrate of R/T Duroid material from Rogers Corp. (Rogers, CT) and achieved a fairly large radiation quality factor for its relative small size of 35 35 7.5 mm. See "On Artificial Magnetodielectric Loading for Improving the Impedance Bandwidth Properties of Microstrip Antennas," IEEE Transactions on Antennas and Propagation, June 2006, Vol. 54, No. 6, p. 1654.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...