Approach Improves Impedance Bandwidth Of Microstrip Antennas

Nov. 16, 2006
MICROSTRIP ANTENNAS have been miniaturized through a number of techniques and choices of materials. Traditional techniques involve the use of high permittivity dielectric materials to decrease the physical dimensions of the radiator. Pekka ...

MICROSTRIP ANTENNAS have been miniaturized through a number of techniques and choices of materials. Traditional techniques involve the use of high permittivity dielectric materials to decrease the physical dimensions of the radiator. Pekka Ikonen and associates from the Radio Laboratory/SMARAD at the Helsinki University of Technology (Helsinki, Finland) chose an approach using artificial magnetodielectric loading to create artificial magnetism at microwave frequencies for a net reduction in the size of a microstrip antenna.

The researchers note that resonant magnetic media can be used with planar radiators in two basic ways. If the resonance of the material lies inside the operational band of the loaded antenna and can be combined with the antenna resonance, it is possible to create a multiresonant antenna. Another method involves using the material-to resonate at a higher frequency than the operational frequency of the loaded antenna, while maintaining the effective magnetic properties over a wide frequency band.

The researchers systematically studied the effects of artificial magnetodielectric substrates on the impedance bandwidth properties of microstrip antennas and built a prototype antenna having volume loaded with an array of metasolenoids. Designed for 2.07 GHz, the antenna employed a host substrate of R/T Duroid material from Rogers Corp. (Rogers, CT) and achieved a fairly large radiation quality factor for its relative small size of 35 35 7.5 mm. See "On Artificial Magnetodielectric Loading for Improving the Impedance Bandwidth Properties of Microstrip Antennas," IEEE Transactions on Antennas and Propagation, June 2006, Vol. 54, No. 6, p. 1654.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications