UWB LNA Achieves Maximum Gain Of 13.5 dB From 1.85 To 10.2 GHz

July 13, 2007
Many researchers are evaluating Ultra Wideband's (UWB's) applicability for short-range, high-speed wireless communications. Yet these systems must first overcome a challenging building block: the low-noise amplifier (LNA). A UWB LNA was recently ...

Many researchers are evaluating Ultra Wideband's (UWB's) applicability for short-range, high-speed wireless communications. Yet these systems must first overcome a challenging building block: the low-noise amplifier (LNA). A UWB LNA was recently proposed by Jihak Jung, Taeyeoul Yun, and Jaehoon Choi from Hanyang University in Seoul, Korea in conjunction with Hoontae Kim from the Samsung Advanced Institute of Technology. This CMOS LNA has a common-source feedback topology and wideband matching techniques. It simultaneously satisfies the requirements of multiband OFDM UWB systems in both noise and bandwidth.

The LNA is composed of two stages. The first stage optimizes the low-noise performance while the second one improves the amplifier's linearity. The second stage also uses a shunt-peaking load to extend the 3-dB band at high frequencies. Interestingly, this topology boasts noiseless input matching. The LNA employs the optimum values of feedback resistors Rf (500 to 800 W) to produce wideband input impedance matching without significantly impacting the noise figure. The resistive and capacitive shunt feedbacks also improve stability, gain flatness, and bandwidth.

Measurement results showed maximum gain of 13.5 dB within a 3-dB bandwidth from 1.85 to 10.2 GHz and return loss of less than 10 dB from 3 to 11 GHz. The fabricated LNA achieves an average noise figure of 4.5 dB from 1.85 to 10.2 GHz. The input-referred third-order intercept point and 1-dB compression point are obtained as -1 dBm and -9 dBm, respectively, while consuming 13 mW in a 0.19-µm CMOS process. See "Wideband and Low Noise CMOS Amplifier for UWB Receivers," Microwave And Optical Technology Letters, April 2007, p. 749.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.