60-GHz Receiver May Be Realized In CMOS

Aug. 13, 2008
Wireless communications systems like highspeed personal-area networks and real-time video transmission demand performance that is above the Gigabit-per-second range. As a result, such systems may require the bandwidth provided by a 60-GHz ...

Wireless communications systems like highspeed personal-area networks and real-time video transmission demand performance that is above the Gigabit-per-second range. As a result, such systems may require the bandwidth provided by a 60-GHz millimeter-wave transceiver. The traditional approach behind such a transceiver is to leverage compoundsemiconductor monolithic microwave integrated circuits (MMICs). Yet, that 60-GHz transceiver may potentially be realized in silicon-process ICs like silicon-germanium (SiGe) BiCMOS and CMOS. Such processes are much lower in cost than compound-semiconductor process ICs. Because the silicon process' yield is much higher, a highly integrated transceiver can be achieved as well. A 60-GHz receiver front-end chip fabricated in 90-nm CMOS has been presented by Toshiba Corp.'s (www.toshiba.com) Toshiya Mitomo, Ryuichi Fujimoto, Naoko Ono, Ryoichi Tachibana, Hiroaki Hoshino, Yoshiaki Yoshihara, Yukako Tsutsumi, and Ichiro Seto.

At 61.5 GHz, the receiver chip delivered measured power gain of 22 dB and a noise figure of 8.4 dB. The chip consists of a lownoise amplifier (LNA), downconversion mixer, and phase-locked-loop (PLL) synthesizer. It can generate the local-oscillator (LO) signal from the phase-locked synthesizer. The chip receives radio signals with an on-chip dipole antenna.

To realize a CMOS 60-GHz receiver RF front end, the chip used a fully differential, receiver front end and a downconversion mixer operating with low LO amplitude. The RF front-end IC can be applied for a BPSK demodulator by using synchronized detection. See "A 60-GHz CMOS Receiver Front-End With Frequency Synthesizer," IEEE Journal of Solid- State Circuits, April 2008, p. 1030.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...