DDS-Based Signal Sources Conquer Semiconductor Characterization

Oct. 11, 2007
With so many modern products relying on semiconductors, it is essential that the behavior of these devices be accurately evaluated. By emulating the waveforms found in actual applications, signal sources promise to help engineers accurately ...

With so many modern products relying on semiconductors, it is essential that the behavior of these devices be accurately evaluated. By emulating the waveforms found in actual applications, signal sources promise to help engineers accurately evaluate the behavior of some basic semiconductor devices. In “Semiconductor Device Characterization Counts on Flexible Stimulus Signals,” Tektronix, Inc. (www.tektronix.com) explains how such signal sources can be leveraged. The 12-page application note targets designers of new semiconductor devices as well as engineers designing those devices into end-user products.

The note begins with a brief overview of different characterization tests. It then delves into the use of signal sources in semiconductor measurement applications. When choosing a signal source, engineers generally understand the importance of key signal-source specifications like bandwidth and accuracy. Yet they should also make it a priority to consider secondary features. For example, say the device under test (DUT) requires extensive characterization of its response to pulse edge variations. In such a case, a signal source should provide adequate pulse-waveform characteristics. User-interface features also should be considered.

The remainder of the note is largely devoted to application examples. A sidebar delves specifically into direct digital synthesis (DDS), which is behind the latest generation of cost-effective, high-performance signal-source platforms. This digital methodology was designed to produce analog waveforms from input digital code. It provides very fast switching from one output frequency to another. It also delivers superior frequency resolution at a competitive cost.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...