DDS-Based Signal Sources Conquer Semiconductor Characterization

Oct. 11, 2007
With so many modern products relying on semiconductors, it is essential that the behavior of these devices be accurately evaluated. By emulating the waveforms found in actual applications, signal sources promise to help engineers accurately ...

With so many modern products relying on semiconductors, it is essential that the behavior of these devices be accurately evaluated. By emulating the waveforms found in actual applications, signal sources promise to help engineers accurately evaluate the behavior of some basic semiconductor devices. In “Semiconductor Device Characterization Counts on Flexible Stimulus Signals,” Tektronix, Inc. (www.tektronix.com) explains how such signal sources can be leveraged. The 12-page application note targets designers of new semiconductor devices as well as engineers designing those devices into end-user products.

The note begins with a brief overview of different characterization tests. It then delves into the use of signal sources in semiconductor measurement applications. When choosing a signal source, engineers generally understand the importance of key signal-source specifications like bandwidth and accuracy. Yet they should also make it a priority to consider secondary features. For example, say the device under test (DUT) requires extensive characterization of its response to pulse edge variations. In such a case, a signal source should provide adequate pulse-waveform characteristics. User-interface features also should be considered.

The remainder of the note is largely devoted to application examples. A sidebar delves specifically into direct digital synthesis (DDS), which is behind the latest generation of cost-effective, high-performance signal-source platforms. This digital methodology was designed to produce analog waveforms from input digital code. It provides very fast switching from one output frequency to another. It also delivers superior frequency resolution at a competitive cost.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications