Image

Feedback

Sept. 16, 2008
Metamaterials and the possibility of negative refraction are interesting, but before industries based on classical and quantum electrodynamics can take them seriously, questions of faster-than-light propagation must be addressed. A negative ...

Metamaterials and the possibility of negative refraction are interesting, but before industries based on classical and quantum electrodynamics can take them seriously, questions of faster-than-light propagation must be addressed.

A negative value of n is required so that the velocity reverses Snell's Law of refraction, but this cannot be valid with modulus of n < 1 and dispersion curves which indicate that all the velocities are faster than the speed of light (c). How can metamaterials be viable for modulus of refractive index |n| < 1 when the propagation curves indicate Vgroup = Vphase = -3c?

This can be seen where dn/d? = 0 for :-

We now have much literature1,2 with curves that correspond to the profoundly researched anomalous dispersion of Sommerfeld Brillouin- Stratton, (modulus of n < 1 for both positive and negative refractive index n.

How is it possible to have negative refractive index without negative wave impedance (and the implied source of energy)? There are also problems with energy density in classical and quantum electrodynamics.

There are increasing numbers of papers in which scientists claim to have proven extraordinary phenomena by applying the concept of group velocity to the anomalous dispersion of waves. Two of the greatest wave theorists, Arnold Sommerfeld and Lon Brillouin, have dealt with the subject.

In separate papers, Sommerfeld and Brillouin wrote that, in anomalous dispersion, the group velocity cannot be the signal velocity.1 Indeed, in anomalous dispersion, the group velocity goes through both negative and positive infinite values. It also goes through values greater than the speed of light (as does the phase velocity).2

In the anomalous dispersion of Sommerfeld Brillouin- Stratton, the incident wave and resonances interfere to cause apparent speed > c, and/or waves apparently travelling backwards. The published values of +0.9 > n > -0.6 cannot occur, especially where Vgroup = Vphase > c, thus invalidating signal and energy velocity.

References
1. A. Sommerfeld, Annalen der Physik 44, 177 (1914); L. Brillouin, Annalen der Physik 44, 203 (1914). For a lucid English-language digest of the two papers, see ref.
2, p. 334. 2. J. A. Stratton, Electromagnetic Theory, McCheers Publishers.

Dr. Max J. Lazarus
Department of Physics
University of Lancaster,
[email protected]

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications