24-Gb/s Software-Controlled Transmitter Outperforms Baseband Systems

July 15, 2008
RECENTLY, A STUDY REVEALED a large gap between the fundamental limits of signaling (Shannon capacity) and the limits that are achievable with baseband signaling. In some applications, notches in the frequency domain are part of the link ...

RECENTLY, A STUDY REVEALED a large gap between the fundamental limits of signaling (Shannon capacity) and the limits that are achievable with baseband signaling. In some applications, notches in the frequency domain are part of the link channels' frequency response. Multitone (MT) signaling may then be employed to potentially reduce the gap between current link performance and Shannon capacity. Unfortunately, conventional MT techniques are not energy-efficient at the multi-gigabitper- second operating rates needed for highspeed links. A new technique, dubbed analog multi-tone (AMT), has now been developed by Rambus, Inc.'s Amir Amirkhany, Aliazam Abbasfar, Metha Jeeradit, Ravi T. Kollipara, and Mark Horowitz in conjunction with QUALCOMM's Jafar Savoj, SiTime's Bruno Garlepp, and Vladimir Stojanovic from the Department of Electrical Engineering at Massachusetts Institute of Technology (MIT).

The team's 24-Gb/s software-programmable transmitter was built with 90 nm CMOS. Aside from a digital linear equalizer, it employs a pattern generator and a 12-GSamples/s, 8-b, digital-to-analog converter (DAC). It supports two- and four-channel AMT and baseband transmission from 2 to 256 PAM.

The transmission mode can be selected by programming the appropriate tap coefficients into the equalizer. The transmitter dissipates 510 mW of power. It is fabricated over an area of 0.8 mm2. According to experimental results, clear eye diagrams have been confirmed at 28 Gb/s. The transmitter flaunts 16 effective feedforward- equalizer (FFE) taps, 10-b tap coefficients, and no constraints on the taps' dynamic range. See "A 24 Gb/s Software Programmable Analog Multi-Tone Transmitter," IEEE Journal of Solid-State Circuits, April 2008, p. 999.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications