Vacuum Electronics Serve As Terahertz Power Source

Dec. 16, 2011
Capabilities have greatly advanced for vacuum-electronic-device (VED) sources of terahertz and near-terahertz coherent radiationboth continuous wave (CW) and pulsed sources. Quantum-theory models of some terahertz VEDs have been developed and used with ...

Capabilities have greatly advanced for vacuum-electronic-device (VED) sources of terahertz and near-terahertz coherent radiationboth continuous wave (CW) and pulsed sources. Quantum-theory models of some terahertz VEDs have been developed and used with some success. Yet all terahertz VEDs can be explained with purely classical models, which is the approach taken by the following group of researchers: John H. Booske from the University of Wisconsin; Richard J. Dobbs from CPI Canada; Colin D. Joye from the US Naval Research Laboratory; Carol L. Kory from Teraphysics, Inc.; George R. Neil with the Thomas Jefferson National Accelerator Facility; Gun-Sik Park with Seoul National University; Jaehun Park from Korea's Pohang University of Science and Technology; and Richard J. Temkin from the Massachusetts Institute of Technology.

For high-power devices needing to generate high-power electron currents in particular, the vacuum is an ideal propagation medium. VEDs do have tradeoffs, though. These include the need for a three-dimensional (3D), vacuum-tight enclosure.

The researchers note that terahertz devices based on VED technology cover a total bandwidth exceeding 10.0 THz. Terahertz-device choices can be roughly broken down into three classes. Compact sources with high mobility include backwards-wave oscillators (BWOs). They range from 0.1 to 1.0 THz with 10T-3 through 103 W (CW and pulsed) output power. Another option is compact gyrotons with moderate mobility, which cover 0.1 to 1.0 THz with 10-3 through 106 W (CW and pulsed) output power. Stationary accelerator-based sources, including free electron lasers (FELs), range from 0.2 to 10.0 THz and beyond with 10 through 109 W (average and pulsed) output power. See "Vacuum Electronic High Power Terahertz Sources," IEEE Transactions On Terahertz Science And Technology, Sept. 2011, p. 54.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...