Negative-Resistance Cell Benefits Millimeter-Wave CMOS VCO

Oct. 11, 2007
Many advanced communication and sensor systems include millimeter-wave voltage-controlled oscillators (VCOs) as key components. Recently, such devices have been realized in CMOS technology. Compared to III-V compound devices or ...

Many advanced communication and sensor systems include millimeter-wave voltage-controlled oscillators (VCOs) as key components. Recently, such devices have been realized in CMOS technology. Compared to III-V compound devices or silicon-germanium (SiGe) HBT, CMOS devices boast lower unit current-gain frequency and maximum oscillation frequency. It is therefore essential to investigate the highfrequency behavior of a negative-resistance cell when designing millimeter-wave CMOS VCOs. In fact, an LC source-degeneration negative-resistance cell of an LC VCO has been investigated by Ping-Chen Huang, Ming-Da Tsai, George D. Vendelin, Huei Wang, Chun-Hung Chen, and Chih-Sheng Chang of National Taiwan University and Taiwan Semiconductor Manufacturing Company (TSMC).

The researchers show that an LC sourcedegeneration negative-resistance cell has a better frequency response to operate at millimeter- wave range under low power consumption. By employing the push-push principle, they were able to obtain an output frequency beyond the maximum frequency of oscillation, fmax.

Specifically, a 114-GHz push-push fully integrated LC VCO was used to demonstrate the LC source-generated topology. It is implemented in TSMC’s 0.13-μm process. With core power consumption of 8.4 mW, the tuning range is 56.4 to 57.6 GHz at the fundamental port and 112.8 to 115.2 GHz at the push-push port. At 10-MHz offset, the measured phase noise at the fundamental port is −113.6 dBc/Hz. See “A Low-Power 114-GHz Push-Push CMOS VCO Using LC Source Degeneration,” IEEE Journal of Solid-State Circuits, June 2007, p. 1230.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.