Handling Power Requires Imagination

Dec. 10, 2009
High-power microwave signals can wreak havoc in the wrong hands. While many microwave applications operate at relatively low power levels, often in the milliwatt range, some systems, such as radar and communications transmitters, must channel robust ...

High-power microwave signals can wreak havoc in the wrong hands. While many microwave applications operate at relatively low power levels, often in the milliwatt range, some systems, such as radar and communications transmitters, must channel robust amounts of high-frequency energy. And knowing how to design components to handle hundreds or even thousands of watts of RF/microwave power requires skill and imagination above and beyond the models in a computer-aided-engineering (CAE) simulator.

During a recent visit to Micronetics, a company with no small knowledge of building components and assemblies that can channel high-power signals, Mechanical Designer Mike Hebert was good enough to share a look at a high-power test rig, complete with heavily amplified test source. The foresight needed to operate with high-power levels, to understand potential hotspots, and even to anticipate the limitations of coaxial connectors and waveguide flanges, was obvious in his setup and test planning. The high-power arena is not for everyone, but it is an intriguing part of RF/microwave design that will receive more attention within the pages of Microwaves & RF (as well as in three supplements dedicated to military electronics technology) in the coming year.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications