Forming A Voltage-Tuned Microwave Phase Shifter

Sept. 16, 2008
Phase shifters are critical components in scanned phased-array antenna systems for both commercial and military applications. Phase shifters can also be combined with transmitter power amplifiers to improve system linearity in cellular ...

Phase shifters are critical components in scanned phased-array antenna systems for both commercial and military applications. Phase shifters can also be combined with transmitter power amplifiers to improve system linearity in cellular communications networks. By using different phase-shifting elements in an antenna array, a beam can be effectively steered electronically, rather than mechanically shifting an antenna. Phase shifters are traditionally based on switching diodes to achieve the different phase states. And research continues on using microelectromechanical- systems (MEMS) devices as components in high-frequency phase shifters. But an application note from Agile RF, Inc. (www.agilematerials.com), "Affordable Phase Shifters," explains how ferroelectric materials can be used to form affordable RF/microwave phase shifters.

Ferroelectric materials are ceramic compounds with unique dielectric properties. Thickfilm ferromagnetic materials have traditionally been used for large industrial capacitors. In recent years, however, several companies have explored the use of these materials in thin-film form for higher-frequency circuits and devices. Thin-film ferroelectric materials exhibit much different properties than bulk, thick-film ferroelectric materials, with a flat temperature response for controlled capacitance over wide temperature ranges. Thin-film ferroelectric materials maintain the high capacitance density of the thick-film materials, and lend themselves to stable, high-performance phase shifters.

The six-page application note explains how Agile RF uses barium strontium titanate (BST) thin-film ferroelectric material to form phase shifters that can be tuned with applied voltage, since the capacitance of these materials changes as a function of applied voltage. Because of the high capacitance density, a great many capacitors can be formed in a small area, to create variable capacitors or voltage-controlled delay lines. The capability to make delay lines also makes it possible to create compact phase shifters and filters. The BST material also exhibits the property of increasing capacitor quality factor (Q) with increasing control voltage, allowing for the development of high-frequency phase shifters with low loss as well as tunable microwave filters.

Agile RF, Inc.
93 Castillian Dr.
Santa Barbara, CA 93117
(805) 968-5159
(805) 968-5159
Fax: (805) 968-3279
Internet: www.agilematerials.com.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications