MIMO System Achieves 108-Mb/s Data Rate Using 16-MHz Channel

June 13, 2007
Higher data rates can be achieved by using wider RF bandwidths. Yet those bandwidths reduce the number of users that can simultaneously be connected to the network. A number of technologies have emerged to resolve this issue. Recently, a fully integrated ...

Higher data rates can be achieved by using wider RF bandwidths. Yet those bandwidths reduce the number of users that can simultaneously be connected to the network. A number of technologies have emerged to resolve this issue. Recently, a fully integrated 5-GHz, 2 X 2, multiple-input multiple-output (MIMO), wireless-local-area-network (WLAN) transceiver, RFintegrated-circuit (RF IC) was implemented in 90-nm CMOS. This RF IC was developed by Intel Corp.'s (Hillsboro, OR) Yorgos Palaskas, Ashoke Ravi, Stefano Pellerano, Brent R. Carlton, Mostafa A. Elmala, Ralph Bishop, Gaurab Banerjee, Rich B. Nicholls, Stanley K. Ling, Nati Dinur, Stewart S. Taylor, and K. Soumyanath.

MIMO technology uses multiple antennas and advanced digital-signal-processing (DSP) technology to exploit multipath effects. It can be used in two different modes. In this paper, the researchers focused on increasing the data rate through spatial multiplexing. Using two receive and two transmit antennas, the fabricated prototype can achieve a data rate of 108 Mb/s in a 16-MHz RF channel. The resulting spectral efficiency is double the efficiency of a legacy 1 X 1 system based on IEEE 802.11a/g technology.

To maximize MIMO phase noise without introducing undesired crosstalk, the engineers designed a shared local-oscillator (LO) generation and distribution network. In the presence of a 25-ns Rayleigh fading channel, the fabricated MIMO receiver achieves a sensitivity of –63 dBm while receiving 108 Mb/s in MIMO spatial multiplexing mode. The sensitivity of one receiver in the presence of AWGN noise is –76 dBm. See "A 5-GHz 108-Mb/s 2 X 2 MIMO Transceiver RF IC with Fully Integrated 20.5dBm P1dB Power Amplifiers in 90-nm CMOS," IEEE Journal of Solid-State Circuits, December 2006, p. 2746.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...