Radio-Wave Propagation Measurement System Targets MIMO At 5.3 GHz

March 15, 2007
Multiple-Input Multiple-Output (MIMO) technology is expected to form the root of many wireless networks. MIMO measurement systems will therefore be needed to provide knowledge about MIMO channels. A radio-wave propagation measurement system for ...

Multiple-Input Multiple-Output (MIMO) technology is expected to form the root of many wireless networks. MIMO measurement systems will therefore be needed to provide knowledge about MIMO channels. A radio-wave propagation measurement system for wideband, multichannel MIMO measurements at 5.3 GHz has been developed by Veli-Matti Kolmonen, Jarmo Kivinen, Lasse Vuokko, and Pertti Vainikainen at Helsinki University of Technology (TKK) in Espoo, Finland.

The wideband MIMO radio channel measurement system that is presented can measure the wave vector in both ends of the radio channel. The system covers three-dimensional (3D) directions and two orthogonal polarizations of the waves in both receive (Rx) and transmit (Tx) using 32 X 32 channels without excessive hardware complexity in the 5.3-GHz frequency range. To estimate the direction of departure (DoD) and direction of arrival (DoA), conventional Fourier processing is used. Such processing is based on the phasing of adjacent elements and the weighting of the element signals.

The researchers' goal was to enable the estimation of the DoD and DoA as quickly as possible—including polarization. Due to the limited MIMO matrix size, microwaves switches are used at both the Tx and Rx. Their experiments delve into the hardware realization of the high-power switch, group geometries, mechanics, and more. They conclude with measurements and analysis of their findings. The resulting measurement system can measure directional data including polarization in both ends of the link with relatively small-size antenna groups that have both semispherical and planar shapes. See "5.3-GHz MIMO Radio Channel Sounder," IEEE Transactions on Instrumentation and Measurement, August 2006, p. 1263.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications