Guarantee Reliable Cable Performance

Sept. 21, 2010
A CABLE SYSTEM must withstand any environment in which it will be used. Many applications in harsh environments demand that cable systems perform beyond conventional safety, environmental, and performance-related standards. Examples include ...

A CABLE SYSTEM must withstand any environment in which it will be used. Many applications in harsh environments demand that cable systems perform beyond conventional safety, environmental, and performance-related standards. Examples include aerospace, cleanroom, and geophysical environments. In an 11-page white paper titled "Selecting the Right Cable System for Your Environment," W.L. Gore & Associates' Lead Design Engineer, Paul Warren, offers a systematic approach that will help design engineers ensure that a cable system will provide reliable performance in both demanding environments and mission-critical applications.

Regardless of the target application, Warren emphasizes that it is possible to identify all of the factors that may affect the electrical performance of a cable system. To follow the suggested approach, one should first list the constraints that will affect performance including electrical, mechanical, environmental, and application-specific factors. This list should then be shared with cable manufacturers so that they can select the optimal materials and construction. Through data testing and analysis, the manufacturer also should demonstrate that the cable will meet its rated performance specifications in a given environment.

The paper identifies potential constraints and defines them. For example, signal integrity may be compromised by electromagnetic interference (EMI), crosstalk, attenuation, and conductor resistance. Mechanical, environmental, and application-specific stress factors also are detailed. The document then reviews the design of the cable system itself.

Given that the material chosen for cable insulation and jacketing is critical, the author provides insight into many commonly used options. Silicone, for instance, is flexible and offers benefits like superior dielectric strength and high-voltage conductor insulation. Yet it cuts easily. In addition, its sticky surface results in a high coefficient of friction. Both advantages and disadvantages also are provided for polyurethane, polyethylene, and fluoropolymers and enhanced fluoropolymers.

Finally, be sure to find out what level of performance testing has been done to ensure that the cable will perform reliably in the target application. Mechanical testing also should be done to verify the electrical performance of the cable while it is working in the conditions of the end application. Environmental conditions should be simulated as well. Before selecting a cable system, an engineer should perform a cost analysis that considers the full system-level impact of a cable failure.

W. L. Gore & Associates, Inc.
555 Paper Mill Rd.
Newark, DE 19711;
(410) 506-7787
Internet: www.gore.com.

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.