GaN Enables High-Power Wideband Designs

Dec. 17, 2009
For next-generation broadband amplifier designs, many engineers are now looking at gallium-nitride (GaN) device technology as an option. Yet some debate still exists about whether GaN high-electron-mobility-transistor (HEMT) technology is a ...

For next-generation broadband amplifier designs, many engineers are now looking at gallium-nitride (GaN) device technology as an option. Yet some debate still exists about whether GaN high-electron-mobility-transistor (HEMT) technology is a viable option compared to gallium-arsenide (GaAs) field-effect transistor (FET) and silicon laterally diffused metal-oxide semiconductor (LDMOS). In the application note titled, "AN-013: Broadband Performance of GaN HEMTs," Nitronex compares GaN HEMT to GaAs FET and silicon LDMOS technologies to show each one's advantages in broadband applications. It then provides a broadband GaN example to illustrate the results that can be expected from the company's current devices.

The 15-page note delves into broadband matching limitations like the Bode-Fano Limit and quarter-wave matching. As a general rule of thumb for typical broadband designs, 15 dB return loss is excellent while 10 dB is good and 6 dB is roughly as poor as can be tolerated. By keeping these rules in mind and matching return-loss plots, the engineer can make an approximation across a given bandwidth for a given number of quarter-wave matching sections. The paper also details broadband design methodology including an output model using load-pull impedances and synthesis using a matching network. It then compares GaN, GaAs, and LDMOS and concludes that GaN's high operating voltage and high power density allow it to enable higher-power wideband designs. This abilitytogether with GaN's inherent robustnesswill continue to push it into more applications.

Nitronex Corp., 2305 Presidential Dr., Durham, nC 27703; (919) 807-9100, Fax: (919) 807-9200, internet: www.nitronex.com.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.