Mwrf 11743 Promo Web2

New Book is an Antenna Resource for All

Oct. 7, 2019
This practical guide on antennas covers a wide range of topics such as microstrip antenna design, phased-array antennas, and much more.

The new book titled, “Practical Microstrip and Printed Antenna Design,” is intended to serve as a practical antenna design guide that covers real-world applications. The author, Anil Pandey from Keysight Technologies, geared the book more toward practical antenna design rather than theoretical analysis. Pandey also states that it includes the most useful recent work available from research in the printed and microstrip antenna fields. The guide targets both new antenna engineers and experienced designers alike, as well as those in the academic world.

Chapter 1 introduces various types of printed antennas, such as microstrip, slot, inverted-F, planar inverted-F, and monopole antennas, among others. A table compares 13 different antennas types, describing each one’s radiation pattern, directivity, and bandwidth. Furthermore, the chapter discusses the important specifications associated with antenna design, such as operating frequency, impedance, return loss, radiation pattern, gain, efficiency, and bandwidth.

Also included in the first chapter is a section on analysis and simulation software for antenna design. The book states that transmission-line, cavity, and full-wave models are the most popular models used to analyze printed antennas.

Microstrip antenna design is the focus of Chapter 2. Topics covered include a microstrip antenna design process, with the corresponding steps visually depicted. The chapter also touches on substrate selection and losses in microstrip antennas, plus other key areas of interest.

In addition, Chapter 2 discusses feed techniques, explaining that microstrip patch-antenna elements can be fed by a variety of methods. Specifically, these methods can be grouped into two categories: direct or indirect contact. The author points out that the four most popular feed techniques used are microstrip lines, coaxial probes, proximity coupling, and aperture coupling.

On top of that, Chapter 2 covers the design and electromagnetic (EM) simulation of microstrip antennas. Shown is a design example of a 2.4-GHz microstrip patch antenna.

Among the many topics covered in subsequent chapters are antenna design for wireless communication and mobile phones, smartphone antenna design compliances and measurement, and printed antenna arrays. The book also has a chapter on automotive antennas, as well as one on phased arrays and beamforming networks for 5G communication systems.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.