MEMS Switches Run For 100 Billion Cycles

July 29, 2004
These rugged MEMS switches offer low insertion loss, high isolation, and high linearity for a variety of commercial and military applications needing high reliability with low current consumption.

Microelectromechanical systems (MEMS) technology is coming of age in terms of reliability. The RMSW200 RF MEMS single-pole, single-throw switch offered by RadantMEMS (Stow, MA), for example, has been performance tested at 10 GHz for high reliability even over 100 billion switching cycles. The switch, which is designed for applications from DC to 40 GHz, also shaves insertion loss to a bare minimum compared to competing technologies, such as PIN-diode-based solid-state switches.

The company's MEMS switches are three-terminal devices that employ a cantilever beam. The switches are fabricated with an all-metal surface micromachining process on high-resistivity silicon. For environmental protection, the switches are hermetically sealed within wafer-scale packaging. A basic RadantMEMS switch configuration consists of a drain, source, gate, and beam (see figure). The beam is deflected by applying a voltage between the gate and source electrodes. The free end of the beam contacts the drain and completes an electrical path between the drain and the source. The company's switches are designed for actuation (gate) voltages from 40 to 120 V. At low frequencies, the on resistance has been measured at less than 1W, while the on-response switching time is about 5 s.

Performance testing conducted on an eight-contact MEMS switch with 0.5-W input power at 10 GHz revealed the device to be perfectly functional when the testing was stopped after 100 billion switching cycles. Both insertion loss and isolation remained stable over the life of the switch. For a switching rate of 1 kHz, the power consumption was a low 5 W.

The company's DC-to-40-GHz model RMSW200 SPST switch is among the highest-frequency commercial MEMS switches. It features less than 0.5 dB insertion loss to 38 GHz and better than 20 dB return loss to 36 GHz. Insertion loss is typically less than 0.27 dB at 2 GHz. The isolation is 20 dB at 10 GHz and 13 dB at 40 GHz.

The model RMSW100 SPST switch is designed for use from DC to 12 GHz. It features less than 0.15 dB insertion loss at 2 GHz and more than 25 dB isolation at 2 GHz, with better than 30-dB return loss at 2 GHz.

RadantMEMS, 255 Hudson Rd., Stow, MA 01775; (978) 562-3866, FAX: (978) 562-6277, e-mail: [email protected], Internet: www.radantmems.com.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.