The DPR consists of two radars: a Ka-band precipitation radar (KaPR) at 35.5 GHz and a Ku-band precipitation radar (KuPR) at 13 GHz. (Photo courtesy of NASA.)

Precipitation Radar Employs Variable Pulse Repetition

March 21, 2014
The dual-frequency precipitation radar aboard the Core Observatory satellite uses variable pulse repetition to make detailed measurements about rainfall structure and intensity.

During space missions, long-range observation often causes delays between receiving and transmitting signals. But efficient sampling can be achieved by transmitting pulses successively. This method of variable pulse repetition frequency (VPRF) is currently being utilized by the dual-frequency precipitation radar (DPR) aboard the Global Precipitation Measurement (GPM) Core Observatory satellite. That mission seeks to better understand the Earth’s weather and climate cycles by more accurately measuring precipitation.

The DPR was developed by the Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communication Technology in Tokyo. Using emitted radar pulses, it makes detailed measurements of rainfall’s three-dimensional structure and intensity. This approach allows researchers to improve estimates of how much water the precipitation holds.

The instrument consists of two radars: a Ka-band precipitation radar (KaPR) at 35.5 GHz and a Ku-band precipitation radar (KuPR) at 13 GHz. The KaPR detects snow and light rain while the KuPR detects heavy rain. Combined, the DPR has 190-kb/s bandwidth over the 1553B spacecraft data bus.

Image courtesy of the JAXA presentation, "Draft plan of JAXA’s GPM/DPR standard and research products"

The instrument has a vertical range resolution of 250 m, which provides vertical information at scales needed to resolve cloud structures. Both channels scan the beams in the cross-track direction to broaden observation areas. This effort is aided by the VPRF technique (see figure), which increases the number of samples at each instantaneous field of view (IFOV) and realizes 0.2 mm/h sensitivity. Such sensitivity allows for insight into the microphysical processes—evaporation, collision/coalescence, aggregation—that helps to distinguish regions of precipitation.

The satellite also houses a global microwave imager (GMI) that uses highly sensitive frequencies to discriminate between the noise and signatures of small particles of precipitation (see “Precipitation Microwave Imager Flexes Its Frequency Range” on Microwaves & RF). Together, the instruments provide a three-dimensional view of the column of precipitation. The Core Observatory satellite was successfully launched from Tanegashima Space Center, Japan in February 2014.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...