Mwrf 4506 Dtspromo
Mwrf 4506 Dtspromo
Mwrf 4506 Dtspromo
Mwrf 4506 Dtspromo
Mwrf 4506 Dtspromo

Test Lab Seeks Better Soldier Safety

March 14, 2017
An advanced blast and crash dummy is providing insights into how to make vehicles and equipment safer for soldiers.

A company known for its research on crash and blast effects on soldiers has opened a new test laboratory within its Seal Beach, Calif., headquarters, devoted to improving vehicle designs for enhanced soldier protection. The new WIAMan ATD Lab supports the work of DTS on the design, development, and testing of the blast dummy known as the Warrior Injury Assessment Manikin (WIAMan). The new 3,000 sq.-ft. facility will use the WIAman to study the effects of underbody blasts, from weapons such as improved explosive devices (IEDs), to develop better means of protection and safer military vehicles.

The test facility includes an 11-ft. drop tower used to simulate the vertical impact experienced by an occupant in a vehicle blast. The WIAMan test dummy is secured in a seat in the drop tower while pulses with 200 g’s of force simulate blast impacts. Five different load paths through the pelvis and femur of the crash dummy are measured to quantify potential spine and lower extremity injuries. The drop tower is capable of accelerating a 20-kg impact mass to a velocity of 20 m/s, and high-speed cameras are used to capture motion at 100,000 frames/s.

DTS and U.S. Army staff stand in front of the WIAMan crash test dummy during a ribbon-cutting ceremony at the opening of the new WIAMan ATD laboratory. (Courtesy of DTS)

The WIAMan uses 146 channels of embedded data acquisition and sensors to measure potential skeletal injuries, although it can support as many as 180 channels. The data-acquisition subsystems are distributed throughout the manikin. The data includes six deg. of freedom of forces, moments, accelerations, and angular velocities from sensors located along the pelvis, spine, tibia, and foot/heel of the manikin. The data is analyzed to provide design information for developing safer military vehicles as well as protective tactical gear.

“The program provides a state-of-art test capability to assess potential skeletal injuries of soldiers exposed to under-body blast,” Said Fred Hughes, director of DTS’ WIAMan Engineering Office. “The WIAMan effort is an example of outstanding collaboration among academia, industry, and the government.”

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

50W SSPA with Built-In Signal Source & Control

March 14, 2024
The RFS-2G42G5050X+ takes Mini-Circuits robust line of solid state, connectorized, high-power amplifiers for RF energy to a new level by integrating the versatility of a signal...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...