Mwrf 1215 05c Fig 2teaser 0
Mwrf 1215 05c Fig 2teaser 0
Mwrf 1215 05c Fig 2teaser 0
Mwrf 1215 05c Fig 2teaser 0
Mwrf 1215 05c Fig 2teaser 0

Time-Slot Division Strategy Enables Efficient Simulation

March 10, 2014
Researchers in Portugal use a technique that may enable the time-efficient simulation of nonlinear heterogeneous RF circuits. Time-slot division with automatic switching between different simulation process algorithms could be the key to more efficient simulations.
Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Modern communications signal streams pass through digitally assisted RF nodes, which rely on advanced digital signal processing. This heterogeneous system becomes difficult and computationally expensive to simulate during pulse-width-modulated on and off states. The issue is that the energy stored in RF components, like resonators, needs classical time-step integration methods for simulation. To increase time efficiency for such simulations, David Ferreira, Jorge F. Oliveira, and Jose C. Pedro have developed an automatic time-slot division technique at the University of Coimbra in Portugal.

The on-off stimulus transition is captured in this diagram. After the stimulus ends in the time-slot division technique a SPICE like simulation model is used to enhance time efficiency of the simulation.

Their time-slot division strategy automatically switches between envelope-following techniques and time-step integration, depending upon factors involving the signal stimulus. The simulation process is then broken down into regions where either envelope or SPICE-like techniques would be more computationally viable. Simulations are run using a self-oscillating RF power amplifier and an on-off amplitude-shift-keying wireless transmitter (see figure).

A comparison of the new method, SPICE-like engines, and multiple-rate time-step integration techniques was performed. The new method showed notable increases in computational speed compared to the other methods with significant increases over SPICE approaches (greater than 2X). According to the researchers, greater time efficiency is possible with circuits that have a larger discrepancy between the carrier period and the on-state duration when compared to simulated circuits. See “Compact High-Power SPST and SP4T RF MEMS Metal-Contact Switches,” IEEE Transactions on Microwave Theory and Techniques, Jan. 2014, p. 18.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...