Mwrf 1307 12gf1 Big 0
Mwrf 1307 12gf1 Big 0
Mwrf 1307 12gf1 Big 0
Mwrf 1307 12gf1 Big 0
Mwrf 1307 12gf1 Big 0

EM Simulation Software Optimizes Large Microwave Cavities

May 6, 2014
Using sub-gridding techniques along with time-domain and frequency-domain simulations, it is possible to enhance the designs of complex microwave cavity heaters.
Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Industrial heating often requires heating objects with complex thermal profiles and long run times. To reduce energy and optimize the heating of certain materials, microwave cavity heating devices often save energy while enhancing performance. Microwave heating is used to dry fabrics, wood, and fiberglass. Additionally, it can be used to eradicate pests in food crops, pasteurize pasta, cure synthetic/composite materials, and post-cure optoelectronic adhesives. To effectively heat these materials on an industrial basis, large microwave cavities with complex modes must be simulated. CST AG gives insight into modeling such cavities in a whitepaper titled, “Modeling Of Large Microwave Cavities For Industrial And Scientific Applications.”

A magnetic-resonance-imaging device that is cryogenically cooled uses 94 GHz of radiation as part of a multi-sample dissolution-dynamic-nuclear-polarization system.

The design of a large microwave cavity heater involves the following challenges: controlling the power distribution within the volume; controlling well-defined E-field/B-field distributions; and optimizing the amount of microwave energy delivered to the goods being processed. As the cavity size is often electrically large, simulating tens to thousands of cubic wavelengths can be computationally intensive. Inclusion of the microwave source also can be critical for effectively profiling the cavity. In fact, it may require special software integration. An additional challenge could be modeling moving microwave sources, such as rotating field stirrers.

To tackle these issues, a software suite is needed that can efficiently model both the time and frequency domains with high levels of accuracy. Having the ability to perform a frequency-domain simulation enables an accurate, resonant description to be achieved in a reasonable amount of simulation time. For larger cavities, having a simulation solver with quality sub-gridding techniques can typically reduce the computational demand while maintaining critical simulations in areas that require high detail.

As an example, a multi-sample dissolution-dynamic-nuclear-polarization (DNP) system operating at 94 GHz with cryogenic cooling is simulated. The DNP is used to polarize particles within water. As a result, patients will provide stronger imaging signals during a magnetic-resonance-imaging (MRI) scan because of the liquid in their bodies.

The 218-cubic-wavelength volume is effectively simulated. The design renders 10- to 20-mW power requirements for maximum DNP enhancement. The power requirement gained from simulating reduces the thermal stress in the sample. In doing so, it induces higher polarization levels compared to other designs.

CST, Bad Nauheimer Str. 19, Darmstadt, Germany 64289, +49 615-173-030

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...