ASIC Processes UWB Baseband Signals

Aug. 26, 2009
IMPULSE-RADIO ULTRA WIDEBAND (IR-UWB) targets low data rates in the range of 0.1 to 10.0 Mb/s. Recently, an application-specific integrated circuit (ASIC) for IR-UWB baseband signals was realized and characterized by David Barras, George von ...

IMPULSE-RADIO ULTRA WIDEBAND (IR-UWB) targets low data rates in the range of 0.1 to 10.0 Mb/s. Recently, an application-specific integrated circuit (ASIC) for IR-UWB baseband signals was realized and characterized by David Barras, George von Bueren, and Heinz Jaeckel from the Swiss Federal Institute of Technology together with Robert Meyer-Piening from Sensirion AG and Walter Hirt from the IBM Zurich Research Laboratory.

This baseband ASIC, which is fabricated in 0.18-m CMOS technology, requires only 13 mW power during the initial acquisition and 6.5 mW during the signal-tracking phase at a pulse repetition rate (PRR) of 5 MHz. The incoming baseband signals result from the direct downconversion of IR-UWB RF pulses. Those pulses are modulated by a binary-frequency-shift-keying (BFSK) scheme. Unlike other projects, this ASIC's analog front end does not rely on the use of high-speed analog-todigital converters (ADCs). Instead, it leverages a non-coherent demodulation method followed by a simple integrate-and-dump detection, which has been realized with analog circuitry.

The researchers' goal was to reduce power consumption by avoiding the implementation of Nyquist-rate ADCs and digital signal processors (DSPs) running at full speed to process the received signal. This implementation also provides the advantage of scalable power consumption with the received PRR. Measurements with the front-end curve in a bit-error-rate (BER) curve exhibit sensitivity of 83.7 dBm. This value roughly corresponds to a communication distance of 10 m in free space without any error correction or any other coding schemes. See "A Low-Power Baseband ASIC for an Energy-Collection IR-UWB Receiver," IEEE Journal Of Solid-State Circuits, June 2009, p. 1721.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.