Mwrf 1367 05h Fig 1promo 0

RF Sensors Biodegrade Under Pressure

May 9, 2014
Biodegradable RF sensors could save patients a costly extra surgery if they can be made to safely break down in the body.

When temporary wireless sensors are used for medical applications, multiple surgeries are needed to install and remove the sensor. If a wholly biodegradable sensor were used, the removal surgery would become unnecessary. To save patients a costly and potentially painful second surgery, Mengdi Luo, Adam Martinez, Chao Song, Florian Herrault, and Mark Allen from the Georgia Institute of Technology explored materials to create an RF biodegradable pressure sensor.

When an LRC resonant circuit has a capacitive transducing element, any changes in the element’s capacitance control the resonant frequency response.

Polyactic acid (PLLA) and polymer liquid crystal (PLC) biodegradable plastics were used to construct the films that operate as the sensor substrate. The conductor materials for the inductor coils and capacitor plates for the sensor were formed from zinc and iron. The coils and plates were electrodeposited on the film using a standard plating bath. The metallic structures and insulating layers were deposited on a flat film that is folded to produce the multi-layer pressure sensor.

Several tests were performed to characterize the biodegradability of the components and the structure. A 0.9% saline solution was used to immerse the metallic pressure-sensor components in a heated mechanical vibration chamber. After a 300-hr. test, the iron oxides were the only remaining material that was not dissolved in the solution. In resonant-frequency testing in saline and air, a similar decline in resonant frequency to increased applied pressure is observed. There is a marked shift in resonant frequency between the air and saline environments. See “A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials,” Journal of Microelectromechanical Systems, Feb. 2014 p. 4.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.