Mixed-Signal Baseband IC Cuts Power Consumption At 60 GHz

Aug. 14, 2012
A lot of attention is being given to the 7-GHz bandwidth available in the 60-GHz band—largely with the hope of achieving multi-gigabit-per-second wireless links.

lot of attention is being given to the 7-GHz bandwidth available in the 60-GHz band—largely with the hope of achieving multi-gigabit-per-second wireless links. But today’s 60-GHz radios often are modeled on their lower-frequency brethren. For instance, they rely on orthogonal frequency division multiplexing (OFDM), which demands relatively high circuit and signal-processing complexity. This results in system partitioning and baseband power dissipation of roughly 1 W. A more optimal approach is the low-power, mixed-signal, adaptive 60-GHz baseband-radio integrated circuit (IC) that has been presented by Antoine Frappé from France’s IEMN-ISEN together with Chintan Thakkar, Lingkai Kong, Kwangmo Jung, and Elad Alon from the University of California at Berkeley.

This baseband device, which is implemented in 65-nm CMOS, operates at 10 Gb/s with a bit error rate (BER) of better than 10−12 while consuming either 53 mW (with adaptation on) or 45 mW (without adaptation). The key is its use of relatively low-dynamic-range analog signal processing. The baseband circuit integrates variable-gain amplifiers, an analog phase rotator, and more. The core signal-processing circuits consume just 29 mW. See "A 10 Gb/s 45 mW Adaptive 60 GHz Baseband in 65 nm CMOS," IEEE Journal Of Solid-State Circuits, April 2012, p. 952.

Sponsored Recommendations

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Making the Case for Micro-Precision 3D Printing

March 28, 2024
Read this white paper to learn how micro-precision 3D printing can provide the flexibility of additive manufacturing at a micro scale.

125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography

March 28, 2024
Read this technical paper to learn how a 125 GHz frequency doubler using a waveguide cavity was produced by stereolithography.