Antenna-Focused Balun Is Implemented In Silicon

May 18, 2011
IN CONTRAST to silicon-based passive components, package-based passives provide insufficient signal couplingespecially at higher frequencies. At IBM Microelectronics (Essex Junction, VT), however, a 77-GHz Marchand balun was designed and ...

IN CONTRAST to silicon-based passive components, package-based passives provide insufficient signal couplingespecially at higher frequencies. At IBM Microelectronics (Essex Junction, VT), however, a 77-GHz Marchand balun was designed and fabricated with the firm's five-metal-layer, BiCMOS technology by Guoan Wang, Amit Bavisi, Wayne Woods, Hanyi Ding, and Essam Mina.

To implement the balun's coupled sections, the team used broadside coupling. As a result, the shorted differential lines provided the ground reference for the top coupled lines. The balun was matched to 50-Ohm single-ended and 100-Ohm differential ends using multiple metal layers in silicon technology. At 77 GHz, the balun exhibited insertion loss of 1.8 dB with amplitude and phase imbalance of 1.8 dB and 1.5 deg., respectively.

The designers also investigated the effects of parasitic reactance in the load terminations and dummy metal fills on the balun's performance by means of electromagnetic (EM) simulations.

Due to the non-idealities in the custom termination, the balun's bandwidth was reduced by 8 GHz. Beyond 50 GHz, additional loss of 0.4 dB at both ports was attributed to the metal fill. The loss was found to be a combination of impedance mismatches caused by the fill structures and resistive losses in those structures. For the balun's performance to closely resemble the expected simulation results, the metal fill must be avoided directly below the signal lines and spaced away from the weakly radiative open end of the unbalanced line. See "A 77-GHz Marchand Balun for Antenna Applications in BiCMOS Technology," Microwave And Optical Technology Letters, March 2011, p. 664.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.