Mwrf 1826 Mw0415app Notes Fig X1 Promo 0

Why Does The Internet of Things Need Different Wireless Standards?

April 28, 2015
Though a variety of wireless standards may be necessary to complete a range of Internet of Things solutions, their growing numbers make it difficult to choose the right one.
1. Personal, local, national, and world area networks are an extension concept representing the growth of interconnectivity worldwide.

The exploding global market for wirelessly interconnected devices has RF/microwave companies working diligently to develop technologies and create solutions for an Internet of Things (IoT) world. Key to the process is choosing the right wireless protocols and wireless networking technology when implementing IoT solutions. In an application note from Texas Instruments, titled “Wireless Connectivity for the Internet of Things,” the author provides an overview of the wireless technologies connecting commercial and industrial devices.

Among the critical factors cited are an IoT solution’s network range and topology. In terms of network ranges, choices include personal-area networks (PANs), local-area networks (LANs), neighborhood-area networks (NANs), and wide-area networks (WANs). Different technologies will better suit the key features of each network range, though. For example, Bluetooth is a common solution for PAN systems, but isn’t as well equipped for LAN systems (unlike WiFi).

Power and noise are the main limiting factors for throughput and range. As a result, each wireless technology leverages a variety of techniques to balance throughput and range with respect to its application. Generally, a network with a wider range will require more transmit power. Also, the maximum data rate of transmission will be lower.

2. There are trade-offs with the benefits between the various wireless networking and peer-to-peer technologies.

A mesh network topology can be created to increase a network’s range without boosting the power and coverage area of a single node. A mesh network differs from a star network in that all of the nodes of a mesh network can exchange data to each other. They can even hop data from one node through another, and then onto the third node.

Many IoT and wireless-networking companies lack the resources or justification for producing their own proprietary wireless-networking standard. As a result, they must choose from already existing common standards. From sub-1-GHz to ZigBee/Bluetooth, the various wireless-networking standards each have strengths in different application spaces. They also operate with different network topologies in mind. The latest device concepts, for example, have configurable RF front-ends capable of multiple wireless standards, high-security systems, and ease of integration.

Texas Instruments, 12500 TI Boulevard Dallas, Texas 75265, 972-995-2011

Continue Reading

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

New

Most Read

Sponsored