Mwrf 2315 47jfig1promo 0
Mwrf 2315 47jfig1promo 0
Mwrf 2315 47jfig1promo 0
Mwrf 2315 47jfig1promo 0
Mwrf 2315 47jfig1promo 0

OCXO Trims Phase Noise and Power Consumption

June 3, 2016
This OCXO delivers outstanding frequency stability with several levels of available phase-noise performance and industry-low power consumption.

Minimizing power consumption is vital to many applications where the power supply is limited, such as in portable and/or battery-based electronic devices. Saving power, however, can be costly in terms of performance for some components. Oven-controlled crystal oscillators (OCXOs), for instance, can exhibit degraded stability and phase noise at lower power levels.

Fortunately, the model LP102 OCXO from Bliley Technologies is designed for outstanding stability and phase noise, all the while consuming a mere 135 mW power during steady-state operation. The OCXO is available with sinewave or HCMOS outputs (with 10-ns rise/fall time) at frequencies from 10 to 50 MHz, and with initial accuracy if ±10 ppb.

The LP102 is a low-phase-noise OCXO available with sinewave or HCMOS output signals and low steady-state power consumption.

OCXOs such as the model LP102 (see figure) are critical to maintaining frequency stability and precise timing in analog and digital circuits and systems. The basic design achieves excellent crystal resonator stability with changes in temperature by maintaining the crystal in a temperature-controlled enclosure. The penalty for enhanced temperature stability is the increased power consumption required to control the temperature of the crystal chamber.

As expected, the LP102 consumes an increased amount of power during startup (350 mW) when it must stabilize the temperature of the crystal chamber. Once this is accomplished, however (typically in one minute or less), the steady-state power consumption is only 135 mW—remarkably low for an OCXO of any kind, as they are usually rated in terms of watts of power consumption.

The LP102 in no way compromises its performance for the low power consumption. The phase noise performance is specified separately for sinewave and HCMOS outputs, as well as for two different temperature ranges.

By way of example: For sinewave outputs from -20 to +70°C, the static phase noise is typically -95 dBc/Hz offset 1 Hz from the carrier, -125 dBc/Hz offset 10 Hz, -162 dBc/Hz offset 1 kHz, and -165 dBc/Hz offset 10 kHz. For sinewave outputs from -40 to +85°C, the phase noise is typically -90 dBc/Hz offset 1 Hz from the carrier, -120 dBc/Hz offset 10 Hz, -158 dBc/Hz offset 1 kHz, and -162 dBc/Hz offset 10 kHz.

For HCMOS outputs from -20 to +70°C, the static phase noise is typically -95 dBc/Hz offset 1 Hz from the carrier, -125 dBc/Hz offset 10 Hz from the carrier, -152 dBc/Hz offset 1 kHz from the carrier, and -155 dBc/Hz offset 10 kHz from the carrier. For the wider temperature range of -40 to +85°C, the phase noise drops to -90 dBc/Hz offset 1 Hz, -120 dBc/Hz offset 10 Hz, -150 dBc/Hz offset 1 kHz, and also -150 dBc/Hz offset 10 kHz from the carrier.

Harmonic levels are -30 dBc or better, while spurious levels are -60 dBc or better. The LP102 low-power OCXO features 0.5 ppb/g acceleration sensitivity. It delivers +9 dBm output power into a 50-Ω load. The OCXO incorporates electronic frequency control for adjustments over a total frequency range of ±0.5 ppm and 10% tuning linearity.

The oscillator is designed for power supplies of +3.3 V dc ± 5%  and +5.0 V dc ± 5% and an operating temperature range of -40 to +85°. Different grades of performance are available, such as frequency stability of ±25, 50, 75, or 100 ppb from -20 to +70°C and ±75 or 100 ppb from -40 to +85°C.

Bliley Technologies, 2545 W. Grandview Blvd., Erie, PA 16506; (814) 838-3571

Looking for parts? Go to SourceESB.

Sponsored Recommendations

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Making the Case for Micro-Precision 3D Printing

March 28, 2024
Read this white paper to learn how micro-precision 3D printing can provide the flexibility of additive manufacturing at a micro scale.

125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography

March 28, 2024
Read this technical paper to learn how a 125 GHz frequency doubler using a waveguide cavity was produced by stereolithography.