Mwrf 1839 Mw0515rd Fig 1promo 0

Differential Group Delay Modules Aid Instantaneous Microwave Measurements

May 11, 2015
Researchers from Singapore experimentally demonstrated a frequency range and resolution adjustable microwave measurement technique using photonic technologies.
Using a single laser source and electrically controlled differential group delay module, researchers were able to develop an instantaneous microwave frequency measurement system.

Optoelectronic techniques applied to RF technologies is a growing trend, and with good reason. The benefits optoelectronics provide are immunity to electromagnetic interference and extremely wide bandwidth transmissions. Now, researchers Songnian Fu, Junqiang Zhou, Perry P. Shum, and Kenneth Lee of the Network Technology Research Centre and Temasek Laboratories of the Nanyang Technological University, Singapore, have practically demonstrated a photonic technique to create an adjustable microwave frequency measurement system.

After a microwave signal of interest is received, the signal is modulated on an optical carrier using a Mach-Zehnder modulator (MZM). A dual pair of programmable differential group delay (DGD) modules then receives the optically modulated microwave signal. The DGD pair introduces unique microwave power fading effects on the optically modulated signals. These effects enable a fixed relationship between the frequency and power of the signal to be derived after the signals are coupled into separate photodetectors for electrical conversion.

DGD module adjustment can be used to vary both the frequency measurement range as well as the resolution range. The research team experimentally verified their design with continuous-wave microwave frequency signals from 15 dBm to 3 dBm of power. The measured errors of the signal were below 0.04 GHz for the entire measurement range of 4.5 to 6.5 GHz.

See “Instantaneous Microwave Frequency Measurement Using Programmable Differential Group Delay (DGD) Modules,” IEEE Photonics Journal, Dec. 2010, p. 967.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.