Mwrf 1707 Muossatellitepromo 0

UPDATE: Third of Four MUOS Satellites Successfully Launched

Jan. 22, 2015
The third Mobile User Objective System (MUOS) satellite, part of a system that leverages smartphone technology for secure satellite communications, has been delivered.
The third Mobile User Objective System (MUOS) satellite, part of a system that leverages smartphone technology for secure satellite communications, has been delivered. (Image courtesy of Lockheed Martin, click for larger version.)

Update: MUOS-3 was successfully launched aboard a United Launch Alliance Atlas V Rocket from the Naval Satellite Operations Center at the Naval Base Ventura County in Point Mugu, California. Once it reaches geosynchronous orbit, the solar arrays and antennas will be deployed and on-orbit testing will begin. It will then be turned over to the Navy for test and commissioning to service.

Previously: Satellites continue to be delivered to strengthen the U.S. Navy and Lockheed Martin’s Mobile User Objective System (MUOS) fleet. MUOS satellites, which operate in a similar way to smartphones, help improve secure mobile satellite communications for warfighters. The third MUOS spacecraft was recently delivered to Cape Canaveral Air Force Station in Florida, where it was slated to be launched this month aboard a United Launch Alliance Atlas V rocket.

The key to MUOS’s connectivity is the use of the latest wideband code-division multiple-access (WCDMA) technology. WCDMA gives users beyond-line-of-sight capabilities to transmit and receive voice and data using an Internet Protocol-based system leveraged from commercial 3G technology. The WCDMA architecture can provide up to 16 times greater capacity than current ultra-high-frequency (UHF) satellites and offers adaptive power control to provide the necessary quality of service while maximizing system capacity.

The MUOS system will consist of four satellites in geosynchronous earth orbit (GEO), with an on-orbit spare and a fiber optic terrestrial network to connect four ground stations. It is expected to reach full operational capability in 2017. MUOS satellites have previously been used to demonstrate the transfer of megabyte data files in the Arctic and as part of the radio testing laboratories that make up the soldier’s network.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.