Mwrf 1599 1016twistedradiobeamswebpromo 0

Twisted Radio Beams Transmit Data at 32 Gbits/s

Oct. 16, 2014
Similar to twisting light waves for high-speed data transfer, researchers twisted radio beams to achieve 32-Gbit/s data-transmission rates.
This image shows the intensity of the radio beams after twisting. (Graphic courtesy of Alan Willner/USC Verti)

Radio beams cope much better with obstacles between the transmitter and receiver than optical systems, which are easily affected by atmospheric turbulence. Scientists at the University of Southern California (USC) recently developed a technique similar to twisting light to send data at high speeds—with radio waves. Led by electrical engineering professor Alan Willner, the research team reached data-transmission rates of 32 Gbits/s across 2.5 m of free space.

To achieve that speed, the team passed each beam, which carried its own independent stream of data, through a “spiral phase plate” that twisted each radio beam into a unique helical shape. A receiver at the other end of the room then untwisted and recovered the data streams. The technology can be used to transmit multiple, spatially collocated radio data streams through a single aperture, ideal for applications such as ultra-high-speed links for wireless backhaul.

At 32 Gbits/s, it’s possible to transmit more than 10 hour-and-a-half long HD movies in one second. In fact, that rate is about 30 times faster than LTE wireless. Previously, Willner led a team that used twisted light beams to transmit data at 2.56 Tbits/s. The team published its findings in an article for Nature Communications, and will focus future research on attempting to extend the transmission’s range and capabilities. 

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.