Mwrf 9253 0718 12j 2
Mwrf 9253 0718 12j 2
Mwrf 9253 0718 12j 2
Mwrf 9253 0718 12j 2
Mwrf 9253 0718 12j 2

Dig Deeper into 5G NR with Simulation

July 6, 2018
This white paper explains why simulation is such a critical factor in the success of 5G New Radio (NR).

The 3rd Generation Partnership Project (3GPP) released the non-standalone (NSA) 5G New Radio (NR) specification last December. The NSA specification is associated with LTE/NR dual connectivity (DC). NSA deployment requires more complex hardware implementations to allow for simultaneous connections with both LTE and NR networks.

In the white paper, “Simulation for 5G New Radio System Design and Verification,” Keysight Technologies discusses some of the common technical challenges associated with 5G NR. Such challenges arise due to LTE/NR DC coexistence issues, as well as implementing millimeter-wave (mmWave) components in mobile devices.

Initially, the paper discusses the global spectrum landscape for 4G and 5G, explaining that the specific 5G spectrum bands zero in on mid-band frequencies (3.3 to 4.2 GHz) for longer distance service and high-band frequencies (24.25 to 29.5 GHz) for faster data speeds. The 3GPP specification defines different frequency ranges (FR), with the FR1 designator corresponding to frequencies between 0.45 and 6 GHz, and FR2 referring to operating bands between 24.25 GHz and 52.6 GHz.

Differences exist between 5G NR and 4G LTE that must be addressed in RF design, according to the paper. It also states that creating thousands of test cases to support increasing LTE frequency bands, defining various carrier-aggregation (CA) scenarios, and calculating intermodulation-distortion (IMD) and harmonics with different combinations of aggressor and victim bands all require a large amount of simulation and test time.

Included in the paper is a sub-6-GHz DC IMD case study. A behavioral model of a DC-enabled RF front end (RFFE) is shown; simulation results reveal the created IMD signals. Following that discussion, a mmWave front-end architecture is presented.

Over-the-air (OTA) simulation is also discussed, first getting into the configuration of an OTA test system before explaining the importance of performing simulations of an OTA environment. This simulation makes it possible to model the individual OTA building blocks, enabling the designer to divide the key functional blocks and better perform a root-cause analysis. An over-the-air (OTA) analysis example is provided as well.

Keysight Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1738; (800) 829-4444

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...