The higher-frequency of MMW bands enable smaller antennas and multiple-element phased arrays on a substrate chip. (Image courtesy of ThinkStock).

Telecommunications Provides Fertile Market for MMW Technology

Sept. 30, 2015
With the large amount of high-capacity spectrum available, millimeter wave (MMW) technology is expected to have a major impact on the telecommunications industry.

With the large amount of high-capacity spectrum available, millimeter wave (MMW) technology is expected to have a major impact on the telecommunications industry, according to a recent report from Frost & Sullivan. While the merits of this technology are widely accepted, its potential to supplement lower-frequency bands is being underlined by rapidly increasing data traffic and the move toward 5G wireless networks.

Millimeter wave bands inhabit the extremely high-frequency (EHF) spectrum, occupying the area between 30 GHz and 300 GHz, as defined by the International Telecommunication Union (ITU). The higher-frequency bands enable smaller antennas and multiple-element phased arrays on a substrate chip, according to Jabez Mendleson, a technical research analyst with Frost & Sullivan. For that reason, MMW technology is being used by OEMs to provide high data rates and low-cost security to small cells located at network boundaries.

Aside from the low costs and widely available spectrum, MMW technology has significant technical advantages. This technology has the potential to remove pressure from networks using lower frequencies, and it can also be used to establish wireless backhaul from small cells. MMW signals are capable of high data rates while optimizing the available spectrum with frequency reuse. In addition, the highly directional nature of MMW signals permits systems to operate close to one another without causing interference.

These advantages, however, are balanced by several technical deficiencies. MMW signals can only travel by line-of-sight. In addition, they are susceptible to rain fade at 60 GHz, 70 GHz, and 80 GHz. They are also subject to heavy oxygen absorption in the atmosphere at 60 GHz. These problems limit the range of MMW signals to a few kilometers at the most. For that reason, MMW technology is being considered primarily for short-range, highly secure local area networks (WLANs).

The millimeter-length E-band, which includes the 71-76, 81-86, and 92-95 GHz bands, do not suffer from the effects of oxygen absorption at the 60 GHz frequency. These bands, however, must be licensed from the Federal Communications Commission (FCC). The upcoming Wi-Fi standard IEEE 802.11ad will run on the unlicensed 60 GHz spectrum with data rates up to 7 Gbits/s in close proximity.

According to a recent report from Markets and Markets, the market for MMW technology is expected to grow to $1.7 billion in 2020, up from $208.1 million in 2014. Frost & Sullivan’s Mendleson notes that, although MMW technology will have its largest impact on telecommunications, it will also find uses in other areas. These include imaging and scanning systems in the healthcare and commercial security fields. In addition, government agencies are looking to increase radar precision in aerospace and defense with MMW technology.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.