Doctors Will Depend More on RF Devices

Doctors Will Depend More on RF Devices

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

With respect to the many forms of machine-to-machine (M2M) and Internet of Things (IoT) applications, high-frequency semiconductors with wireless communications capabilities are being projected for strong growth markets for years to come. Perhaps one of the more significant “submarket” areas within these wireless device growth markets is in medical electronics, where different types of sensors and transceiver integrated circuits (ICs) can have a profound effect on health care and quality of life.

Advances in RF/microwave ICs have made possible tremendous progress in both implanted and external devices for monitoring and controlling bodily functions, such as neurostimulators and heart-rate monitors. With the high-data-rate communications possible over wireless radio bands, medical devices like blood pressure and heart-rate monitors can now be worn externally, without need of implantation. They can provide ready Internet-based remote access for doctors or even concerned family members.

Some of the same design requirements that are driving the development of sensor-based RF ICs for IoT applications—e.g., the “smart home” and “smart office”—are leading to the performance improvements needed for medical applications, including low-power consumption and long operating lifetimes. By building applications around some of these new, low-power ICs, key health-monitoring functions can be performed while drawing only microamperes of current. This translates into operating lifetimes of seven years or longer with high reliability.

Requirements for medical electronic devices are, by necessity, quite demanding. But with the expected simultaneous growth in medical electronic and wireless IoT markets, RF/microwave IC developers willing to engage in medical electronic markets can leverage many of the requirements for IoT applications (extreme miniaturization and conservation of energy, to name two) into medical electronic solutions.

Potential solutions range from audio-frequency transceivers that can aid the hearing impaired to pill-sized cameras that can be swallowed for endoscopic imaging and analysis. These tiny cameras will wirelessly transmit internal images from inside the stomach, or blockages within the urinary tract or kidneys, as a quite “civilized” wireless alternative to making incisions in a patient for exploratory purposes.

The use of implantable, low-power wireless transceivers has been touted by a great many researchers around the world as a means of extending life when used to communicate with and control the heart and lungs. It can also dramatically improve the quality of life for patients facing neurological problems, enabling communication with the brain and the control of robotic limbs in place of injured or nonfunctioning ones.

Among the challenges facing IC developers for medical applications—in addition to simply developing high-performance sensors and radio transceivers—are the extreme miniaturization of these circuits and the long-term reliability. Low-power operation can contribute to long operating lifetimes. However, strong energy-reuse capabilities, such as implanted circuitry and devices that can be recharged inside a body by means of wireless signals can help even further, and add new meaning to “a medical checkup” for many patients.

The global population has an ever-increasing average age, with all the health-care concerns of typically older patients. Advances in semiconductor technology are poised to provide medical electronic solutions that will contribute to the longevity and quality of life for many patients.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.
TAGS: Medical
Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish