Viewpoint: SiGe Fires Single-Chip Fractional N-Synthesizer

Jan. 20, 2004
Silicon-germanium (SiGe) semiconductor technology has long held the promise of high-frequency operation with high levels of integration. The process technology made headlines in the early 1990s with claims of device transition frequencies that ...

Silicon-germanium (SiGe) semiconductor technology has long held the promise of high-frequency operation with high levels of integration. The process technology made headlines in the early 1990s with claims of device transition frequencies that could surpass expensive gallium-arsenide (GaAs) technology while using standard silicon wafers. While the technology is now making its way into a variety of integrated circuits (ICs), mainly for cellular handsets and wireless-local-area-network (WLAN) cards, its integration potential has been largely untapped. A single-chip fractional-N SiGe synthesizer from Centellax (Santa Rosa, CA), however, offers a glimpse of what this technology can achieve, using multiple varactor-tuned voltage oscillators to cover frequencies between 20 and 30 GHz and a total of more than 10,000 transistors on chip.

For the complete story, please visit the Microwave & RF homepage: MWRF --> http://lists.planetee.com/cgi-bin3/DM/y/eA0JtlqC0A0BEtT0AA

Sponsored Recommendations

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...