Inkjet-Printed Antennas Cover Beyond 10 GHz

Jan. 15, 2013
With the complete characterization of an inkjet printing process using metallic nanoparticle inks on a paper substrate, researchers have demonstrated how inkjet printing can be applied to low cost, high gain, and wideband antenna design.

Using an inkjet printing process, it is possible to fabricate low-cost organic substrates that will serve devices requiring smaller and lighter-weight components. Furthermore, the inkjet printing of metallic nanoparticles also has allowed the production of flexible devices. Although antennas have been printed, they have been both low gain and narrow band, as they typically served the RF-identification (RFID) market. At Saudi Arabia’s King Abdullah University of Science and Technology, Benjamin S. Cook and Atif Shamim have conjured a fully characterized inkjet printing process that can be used to fabricate low-cost, paper-based, high-gain, and ultrawideband (UWB) antennas.

The partners characterized the inkjet printing process using metallic nanoparticle inks on a paper substrate for frequencies to 12.5 GHz. By comparing laser versus heat sintering of the metallic nanoparticles, they also demonstrated the cost and time benefits of laser sintering. The laser-sintering technique, which was characterized on paper, allows for quicker sintering with little to no substrate heating and lower energy requirements.

Among the antennas fabricated using the inkjet-printing process were a UWB Vivaldi antenna, which exhibited gain of 8 dBi—thereby achieving higher gain than currently produced inkjet-printed antennas. In addition, a slow-wave log-periodic dipole array leveraged a new miniaturization technique to show 20% width reduction. See “Inkjet Printing of Novel Wideband and High Gain Antennas on Low-Cost Paper Substrate,” IEEE Transactions On Antennas And Propagation, Sept. 2012, p. 4148.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.