Mwrf 2230 43efig1 Promo 0 0

Getting a Grip on Variable Attenuators

April 4, 2016
With continuously variable mechanical attenuators, it’s possible to achieve near exact attenuation setting by tuning a control back and forth until reaching a precise amplitude.

Variable attenuators come in many forms, from mechanical, hand-adjusted components to digitally programmable units like those from Fairview Microwave (see "Programmable Attenuators Step 30 MHz to 40 GHz"). Such attenuators can be adjusted in level, discrete steps or by continuously variable changes.

With continuously variable mechanical attenuators, it’s possible to achieve an almost exact attenuation setting by tuning a control back and forth until a precise amplitude is reached. A step attenuator, on the other hand, will provide whatever precision is possible by the size of the attenuation steps. There is also some degree of variation in those tuning steps, measured as the repeatability of the tuning steps.

Modern programmable step attenuators such as Fairview Microwave’s components provide one performance parameter that no mechanical variable attenuator can match: attenuation tuning speed. A mechanically tuned variable attenuator may be better suited for experimental applications, in which a desired attenuation setting may be unknown. But the fast attenuation setting speeds of programmable PIN diode attenuators makes them better candidates for automated testing and any functions that must use many known attenuation values.

A mechanically tuned variable attenuator may be larger than most programmable diode attenuators, but it can also handle more power. Thus, it might be better suited for applications requiring healthy amounts of signal power, such as when performing passive intermodulation (PIM) testing. While the two types of variable attenuators are distinctly different in form and function, they also have value in different applications, which means a test bench often makes room for both.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.