Mwrf 1720 Wificommunications 1
Mwrf 1720 Wificommunications 1
Mwrf 1720 Wificommunications 1
Mwrf 1720 Wificommunications 1
Mwrf 1720 Wificommunications 1

To Balun or Not to Balun?

Feb. 9, 2015
Because most IoT RF integrated circuits (RFICs) have differential transceiver (TRX) ports to the antenna, using a single-ended antenna architecture therefore requires a balun.

For IoT applications, the limited space and exact positioning of the microcontroller unit (MCU) and sensors tend to limit the antenna’s geometric flexibility. Although they’re highly efficient and wideband, differential antennas typically require more space and precise design geometries—features that aren’t available on most crammed IoT PCBs. Many IoT antennas are therefore single-ended, which allows them to take advantage of the isolated ends and crammed footprints of IoT-module PCBs.

Most IoT RF integrated circuits (RFICs) have differential transceiver (TRX) ports to the antenna. Using a single-ended antenna architecture therefore requires a balun. A balun also is needed when unbalanced transmission lines, such as coaxial cables, are used to feed the antenna. However, baluns add cost and require valuable PCB real estate near the MCU. Single-ended antenna options also tend to perform less efficiently than differential ones. Given the compressed antenna-typology geometry options, though, the IoT module designer may not have much choice.

Antenna design is an exercise in tradeoffs. Many antenna performance parameters often compete with physical and electrical characteristics. In the case of IoT modules, however, antenna design concerns are compounded. The proximity to other electronics and the size/cost/power constraints limit performance. Factors like antenna placement, groundplanes, antenna mismatch, line-of-sight disruption, and inter-device interference are all application-specific design issues. The antenna typology selected also will directly impact gain characteristics, frequency, bandwidth, radiation pattern, and radiation efficiency. For a low-power, small-size, and high-reliability design to be achieved, adequate consideration must be placed on the antenna as the key connecting technology for IoT modules.

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...