Mwrf 4653 Custommmicpromo

Learn to Overcome Phase Noise

March 28, 2017
This tech brief discusses phase-noise basics, and explains how proper component selection can optimize system performance.

Phase noise is a critical parameter in sophisticated radar systems, as well as other types of communication systems. For example, a receiver’s sensitivity can be improved by minimizing phase noise. In the tech brief, “Addressing Phase Noise Challenges in Radar and Communication Systems,” Custom MMIC discusses the importance of phase noise, and breaks down various approaches to overcome the problem.

Initially, the tech brief explains how phase noise is commonly used to define an oscillator’s frequency stability. The phase-noise performance of an oscillator ultimately affects the performance of the system in which it is incorporated. Phase noise can impact the performance of many RF/microwave systems, but the document focuses two in particular: direct-downconversion receivers and radar systems.

Optimizing the phase noise of an oscillator will obviously help to achieve the required system performance. However, the paper points out that an amplifier is often used to increase an oscillator’s output power level in order to sufficiently drive a mixer’s local-oscillator (LO) port. Unfortunately, the amplifier increases the phase noise of the LO signal—all devices add noise power to an input spectrum due to 1/f noise, or pink noise. No doubt, then, that the presence of this amplifier could lead to problems.

A phase-noise plot of a low-noise amplifier (LNA) is provided in the paper. If this noise level is greater than the phase noise of the input signal, the amplifier noise would actually have a greater effect on the output noise spectrum. Therefore, the benefit of using an oscillator with low phase noise is essentially negated due to the phase noise generated by the amplifier.

Amplifier phase noise can be overcome by looking into the device’s physics. Specifically, the document explains why gallium-arsenide (GaAs) bipolar devices are beneficial in terms of phase-noise performance. It goes on to mention several of Custom MMIC’s low-phase-noise amplifiers based on GaAs heterojunction-bipolar-transistor (HBT) technology. The tech brief concludes by discussing how frequency multipliers also can impact phase-noise performance.

Custom MMIC, 300 Apollo Dr., Chelmsford, MA 01824; (978) 467-4290; www.custommmic.com.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.