U.S. Army Research Laboratory
Experiments continue on the uses for an aluminum nanomaterial powder discover at the U.S. Army Research Laboratory at Aberdeen Proving Ground, Md.

Army Siphons Energy from Water

Aug. 8, 2017
An aluminum-based metamaterial produces a catalytic reaction with water, breaking apart the hydrogen and oxygen molecules and releasing energy in addition to the oxygen and hydrogen gases.

Metamaterials are often valued for their high performance as circuit substrates, although the U.S. Army Research Laboratory (ARL) recently discovered that certain metamaterials can also serve as a source of energy. The aluminum metamaterial developed by ARL releases energy when it comes in contact with water or any liquid containing water. The new metamaterial has the potential  to be a starting point for batteries and portable power sources, which can be carried to a point of use and then activated by water from a convenient source.

The new metamaterial was discovered by U.S. Army scientists and researchers during routine experiments on different materials. The nano-galvanic aluminum-based metamaterial breaks apart the bonds between the two atoms of hydrogen and the atom of oxygen which form water (H2O), releasing energy and producing oxygen and hydrogen gases. The researchers discovered a bubbling reaction when adding water to the material. “We all as a team were very excited and ecstatic that something good had happened,” said Dr. Anit Giri, a physicist with the lab’s Weapons and Materials Research Directorate. The water molecules literally split apart when coming into contact with the aluminum nanomaterial.

Considering the large global supply of water, the researchers identified a number of benefits from the material and the reaction. For example, “the hydrogen that is given off can be used as a fuel in a fuel cell,” Scott Grendahl, a materials engineer and team leader, “What we discovered is a mechanism for a rapid and spontaneous hydrolysis of water.”

Catalysis of water has traditionally been performed by adding a catalyst to aluminum, over an extended period of time, at elevated temperatures, and with a great deal of electricity applied to foster the reaction. Traditional methods can also leave behind toxic chemicals as part of the reaction, including sodium hydroxide and potassium hydroxide. As Giri observed, this new catalysis process is attractive for its simplicity. “In our case, it does not need a catalyst,” he said. “Also, it is very fast. For example, we have calculated that 1 kg of aluminum powder can produce 220 kW of energy in just 3 minutes.

“These rates are the fastest known without using catalysts such as an acid, base, or elevated temperatures,” Giri added.

In terms of in-field use, the discovery may well lead to the development of new battery technologies that enable troops to take advantage of longer run times for portable, battery-powered equipment, such as two-way radios. “These teams are out for a short number of days—three to five days—and a lot of that depends not only on their food supplies, but on how long their supplies last in terms of their equipment,” said Grendahl. “And right now, that stems from lithium batteries. If we can recharge those batteries, they can stay out longer.”

Experiments were performed on the use of the catalytic energy-producing reaction for different applications. In one, a small radio-controlled tank was powered by the aluminum-powder/water reaction. After the electricity from that reaction was exhausted, the hydrogen was used to power the radio-controlled tank model.

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.