SWB Antenna Exhibits Impedance Bandwidth Beyond 25:1

June 17, 2009
NUMBEROUS SUPER-WIDEBAND (SWB) antennas have been developed with impressive return loss, radiation pattern, and gain. Yet such performance characteristics do not reveal the SWB antennas' ability to transceive pulse signals. Antenna applications ...

NUMBEROUS SUPER-WIDEBAND (SWB) antennas have been developed with impressive return loss, radiation pattern, and gain. Yet such performance characteristics do not reveal the SWB antennas' ability to transceive pulse signals. Antenna applications also are impacted by phase variation of the far field, transfer function, and transient response in the time domain. Keeping these aspects in mind, a printed SWB antenna has been proposed and studied by Yuandan Dong, Wei Hong, Leilei Liu, Yan Zhang, and Zhenqi Kuai from China's Southeast University.

The proposed antenna comprises a cornerrounded groundplane, tapered microstrip feeder, and novel radiating path that is made by one half-disk and one half-ellipse structure. With this configuration, a ratio impedance bandwidth of more than 25:1 can be achieved with a voltage standing wave ratio (VSWR) of less than 2:1. Yet the omnidirectional radiation pattern in the H-plane was only observed in the low frequency from 640 MHz to about 2 GHz. The antenna system's time-domain behavior was impacted by the operating bandwidth as well as the source pulse and antenna orientations. See "Performance Analysis of a Printed Super-Wideband Antenna," Microwave And Optical Technology Letters, April 2009, p. 949.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.