Filter Covers 87.9 Percent Bandwidth Over 430 To 1105 MHz

Sept. 16, 2008
Mobile-coMMunications services require a filter's tuning range to be extended by at least 2:1. Yet such a wide tuning range often yields increased insertion loss at the lowest resonant frequency. To compensate for this insertion loss, designers ...

Mobile-coMMunications services require a filter's tuning range to be extended by at least 2:1. Yet such a wide tuning range often yields increased insertion loss at the lowest resonant frequency. To compensate for this insertion loss, designers can leverage an active filter with negative resistance characteristics. Unfortunately, such a filter will require additional area and power consumption compared to passive designs. To solve this dilemma, a varactortuned microstrip bandpass filter with a wide tuning range has been proposed by Jeongpyo Kim and Jaehoon Choi from Hanyang University's Department of Electrical and Computer Engineering in Seoul, Korea.

The proposed filter was designed to have a tuning range of more than 2:1 (500 to 1000 MHz). It has variations in insertion loss from lowest and highest frequencies of less than 3 dB. At the heart of this tunable bandpass filter is a hairpin line resonator and loading capacitors that use varactor diodes. This simplified structure boasts a wide tuning range of 87.9 percent from 430 to 1105 MHz. The passband insertion loss is less than 4.42 dB.

As the resonant frequency is lowered by the direct-current (DC) bias, the diodes' capacitances are simultaneously increased. Yet the coupling energy at the coupled portion is not decreased. An insertion-loss characteristic can therefore be developed. The lowest resonant frequency is 430 MHz with a 4.42-dB insertion loss. In contrast, the highest resonant frequency is 1105 MHz with an insertion loss of 1.524 dB. See "Varactor-Tuned Microstrip Bandpass Filter with Wide Tuning Range," Microwave and Optical Technology Letters, October 2008, p. 2574.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.