Mwrf 1368 05h Fig 3promo 0

GaN MMICs For Small Cells Get A Doherty Power Boost

May 12, 2014
Saving cost and space is a significant incentive for integrating the parts of microwave power amplifiers. There is a tradeoff of performance that could be enhanced by external passive components and clever power splitting in PAs.

Using a 0.25-μm gallium-nitride-on-silicon-carbide (GaN-on-SiC) process, a monolithic-microwave-integrated-circuit (MMIC) power amplifier (PA) promises to meet the power, size, and cost considerations of small-cell applications. With support from the IT R&D Program of MSIP/KEIT, Republic of Korea, Cheol Ho Kim, Seunghoon Jee, Gweon-Do Jo, Kwangchun Lee, and Bumman Kim designed and tested the 2.14-GHz hybrid-Doherty PA. To achieve low part count and reasonable efficiencies in a compact package, the team used an unconventional and uneven power-splitting technique.

A compact PA design takes advantage of the size-reduction capabilities of a GaN-on-SiC MMIC while using low-loss chip inductors for efficiency enhancements.

For the nonsymmetrical configuration, different-sized PAs were used. The peak amplifier was sized larger than the carrier amplifier for greater backoff characteristics, which resulted in a higher peak-to-average power ratio (PAPR). This design decision helped the PA achieve a higher data rate capable of supporting 4G and LTE requirements. To further reduce size, low-loss chip inductors were placed around the MMIC die. They reduced the inductor circuit footprint by a factor of 10.

Exhibiting a high drain efficiency of 52.7%, the PA provided output power to +22.2 dBm. It achieves an adjacent power leakage rate of -49.6 dBc for an LTE signal. The peak-to-average power ratio (PAPR) reached 7.1 dB after the digital-predistortion linearization. See “A 2.14-GHz GaN MMIC Doherty Power Amplifier for Small-Cell Base Stations,” IEEE Microwave and Wireless Components Letters, April 2014, p. 263.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.