Mwrf 1456 05i Fig 2promo 0

60-GHz PLL-Based Modulator Boosts Radar Applications

June 26, 2014
A 65-nm CMOS process is used to prototype an all-digital, fractional-N PLL for FMCW radar applications.

Significant research efforts have been made to realize a cost-effective CMOS IC radar for automotive, security, and presence-detection applications. At 60 GHz, sufficient bandwidth is available to achieve the range resolutions needed for high-resolution velocity detection. To realize this capability, Wanghua Wu, Robert Bogdan Staszewski, and John R. Long from Marvell Semiconductor Inc. have designed and implemented a 60-GHz frequency-modulated, continuous-wave (FMCW), digitally intensive transmit modulator. This modulator is based upon a multi-rate, all-digital phase-locked-loop (PLL) architecture.

In addition to sophisticated equipment, 60-GHz test benches often require on-die probing techniques to extract signals from the IC under test.

To improve the system’s chirp linearity, a high-rate digitally controlled oscillator (DCO) clock is used. This DCO is realized from switched-metal capacitors, which are distributed across a transformer-coupled resonator for a 10% tuning range with roughly 1-MHz resolution at 60 GHz. This feature allows the modulated paths to have clock-cycle precision in time.

The measured root-mean-square (RMS) frequency error of the FMCW signal reaches 117 kHz for a 62-GHz carrier. The modulator covers 1.22 GHz with RMS jitter response of 590.2 fs. Settling time was measured down to 3 {micro}s with reference spur levels of -74 dBc and no other significant spurs. See “A 56.4-to-63.4 GHz Multi-Rate All-Digital Fractional-N PLL for FMCW Radar Applications in 65 nm CMOS,” IEEE Journal Of Solid-State Circuits, May 2014, p. 1081.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.