Mwrf 1773 05crdf3 0

300-GHz Transceiver Boasts On-Chip LO and Mixers

March 20, 2015
Researchers from Korea and the United States designed a 300-GHz transceiver for wideband communications and imaging applications. It houses fundamental local oscillators and mixers on a 250-nm indium-phosphide double-heterojunction bipolar transistor process.
Using a fully differential typology, the amplifier and mixer blocks suppresscommon-mode noise and non-ideal ground parasitics.

As an alternative to high-speed communication buses, terahertz frequencies may be an option for close point-to-point communications for Internet-of-Things (IoT) and machine-to-machine (M2M) communications—both between devices and within larger systems. When implementing terahertz technology, though, the extremely small wavelengths force researchers to develop complete integrated solutions on a single chip. To achieve a fully functioning terahertz transceiver on-chip, for example, a 250-nm indium-phosphide (InP) double-heterojunction-bipolar-transistor (DHBT) process with integrated local oscillators and mixers was used by researchers from Korea and the United States—Sooyeon Kim, Jongwon Yun, Daekeun Yoon, Moonil Kim, Jae-Sung Rieh, Miguel Urteaga, and Sanggeun Jeon.

To fabricate such a device, the researchers needed to build the local oscillators (LOs) and mixers on-chip and with the same technology. Because they operate in the fundamental mode on the same chip, the LOs and mixers reduce the chip area and direct-current (DC) consumption. They also improve the RF performance characteristics of the transceiver. For its part, the RF amplifier typology includes a five-stage differential amplifier chain with input and output matching networks. It comprises five common-base HBT pairs cascaded with 32- μm intervals.

The receiver has a noise figure of 12.0 to 16.3 dB with an intermediate frequency of 1.1 to 7.7 GHz, 3-dB bandwidth of 20 GHz, and a peak conversion gain of 26 dB at 298 GHz. With comparable performance to the receiver, the transmitter exhibits a conversion gain of 25 dB at 298 GHz, a 3-dB bandwidth of 18 GHz, and output power of -2.3 dBm. Both the transmitter and receiver operate with a combined DC power consumption of less than 1 W. See “300 GHz Integrated Heterodyne Receiver and Transmitter With On-Chip Fundamental Local Oscillator and Mixers,” IEEE Transactions on Terahertz Science and Technology, Jan. 2015, p. 92-101.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.