Mwrf 1015 Cmos 1 0

288-GHz CMOS Source Radiates -4.1 dBm

Nov. 4, 2013
This all CMOS submillimeter wave imaging chipset comprises two magnetically coupled, balanced triple-push oscillator cores with an on-chip antenna.
Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

At 300 GHz and beyond, room-temperature imaging detectors—and incoherent direct detectors in particular—lack the sensitivity of a low-noise amplifier (LNA). As a result, only active imaging approaches provide the needed signal-to-noise ratio (SNR). This issue has underscored the need for robust, lightweight, and low-cost power sources in the sub-millimeter-wave range. Above 200 GHz, however, the output power of both electronic and photonic signal sources rapidly drops. At Germany’s University of Wuppertal, a 288-GHz lens-integrated, high-power source has been implemented in 65-nm CMOS by Janusz Grzyb, Yan Zhao, and Ullrich Pfeiffer.

Two free-running triple-push ring oscillators, which are locked out of phase by magnetic coupling, comprise the engineers’ source. The oscillators drive a differential on-chip ring antenna. That antenna, in turn, illuminates a hyper-hemispherical silicon lens through the die’s backside. An on-wafer breakout of the oscillators’ core achieves peak output power of -1.5 dBm with 275-mW direct-current (DC) power consumption. The packaged source delivers -4.1 dBm of radiated power. The source measures just 500 x 570 μm2 including the antenna. See “A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology,” IEEE Journal Of Solid-State Circuits, July 2013, p. 1751.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.